On Sequential Hypotheses Testing via Convex Optimization
نویسندگان
چکیده
We propose a new approach to sequential testing which is an adaptive (on-line) extension of the (off-line) framework developed in [1]. It relies upon testing of pairs of hypotheses in the case where each hypothesis states that the vector of parameters underlying the distribution of observations belongs to a convex set. The nearly optimal under appropriate conditions test is yielded by a solution to an efficiently solvable convex optimization problem. The proposed methodology can be seen as a computationally friendly reformulation of the classical sequential testing. DOI: 10.1134/S0005117915050070
منابع مشابه
Testing Composite Hypotheses via Convex Duality ∗
We study the problem of testing composite hypotheses versus composite alternatives, using a convex duality approach. In contrast to classical results obtained by Krafft & Witting [11], where sufficient optimality conditions are obtained via Lagrange duality, we obtain necessary and sufficient optimality conditions via Fenchel duality under some compactness assumptions. This approach also differ...
متن کاملOn Sequential Optimality Conditions without Constraint Qualifications for Nonlinear Programming with Nonsmooth Convex Objective Functions
Sequential optimality conditions provide adequate theoretical tools to justify stopping criteria for nonlinear programming solvers. Here, nonsmooth approximate gradient projection and complementary approximate Karush-Kuhn-Tucker conditions are presented. These sequential optimality conditions are satisfied by local minimizers of optimization problems independently of the fulfillment of constrai...
متن کاملSequential Optimality Conditions and Variational Inequalities
In recent years, sequential optimality conditions are frequently used for convergence of iterative methods to solve nonlinear constrained optimization problems. The sequential optimality conditions do not require any of the constraint qualications. In this paper, We present the necessary sequential complementary approximate Karush Kuhn Tucker (CAKKT) condition for a point to be a solution of a ...
متن کاملChange Detection via Affine and Quadratic Detectors
The goal of the paper is to develop a specific application of the convex optimization based hypothesis testing techniques developed in A. Juditsky, A. Nemirovski, “Hypothesis testing via affine detectors,” Electronic Journal of Statistics 10:2204–2242, 2016. Namely, we consider the Change Detection problem as follows: given an evolving in time noisy observations of outputs of a discrete-time li...
متن کاملEstimation of Software Reliability by Sequential Testing with Simulated Annealing of Mean Field Approximation
Various problems of combinatorial optimization and permutation can be solved with neural network optimization. The problem of estimating the software reliability can be solved with the optimization of failed components to its minimum value. Various solutions of the problem of estimating the software reliability have been given. These solutions are exact and heuristic, but all the exact approach...
متن کامل